Benefiting from EDF EPR projects

JADERNÉ DNY 2020 na ZČU v Plzni

New Nuclear Source for the Czech Republic
State of preparation in 2020

September 23, 2020
AGENDA

- EDF company profile
- Reference projects and construction experience
- EDF Technology Portfolio
- New projects
- EDF value proposition for Czech Republic nuclear new build program
AGENDA

- EDF company profile
- EDF Reference projects and construction experience
- EDF Technology Portfolio
- New projects
- EDF value proposition for Czech Republic nuclear new build program
EDF GROUP AT A GLANCE

EDF produces around 22% of the European Union’s electricity, primarily from nuclear power.
EDF GROUP
A unique expertise and know-how in the nuclear industry

EDF, the world’s leading nuclear operator

- 56 reactors
- 1 Reactor under construction in France/63.1GW
- 15 Reactors under construction in UK/8.9GW
- 2 Reactors in commercial operation in China/Taishan

- Operate the existing nuclear fleet beyond 40 years for a competitive energy mix

EDF, a global expertise

EDF manages the entire lifecycle of nuclear generation facilities

- COMMISSIONING
- OPERATING
- DESIGN
- DECOMMISSIONING AND DISMANTLING

EDF, the world’s leading nuclear operator manages the entire lifecycle of nuclear generation facilities.
Build a net zero energy future with electricity and innovative solutions and services, to help save the planet and drive wellbeing and economic development.
AGENDA

- EDF company profile
- EDF Reference projects and construction experience
- EDF Technology Portfolio
- New projects
- EDF value proposition for Czech Republic nuclear new build program
EPR FLAMANVILLE 3: Reference Plant

GENERAL INFORMATION
- First EPR reactor in France
- Power output: 1,650 MW
- EDF combining its skills and responsibilities of Owner & Operator and Architect Engineer: 100% EDF ownership

CURRENT STATUS
- March 2016: Welding of 1st Primary Circuit
- January 2018: Cold tests carried out
- August 2017: Nuclear circuit cleaning
- August 2018: Functional tests vessel open successfully completed
- March 2019: End of 1st phase hot functional tests: > 95% of the test criteria testing compliant
- Ongoing: Welding repairs
- February 2020: End of 2nd phase of the hot functional test

NEXT
- End 2022: Fuel loading
EPR TAISHAN 1 & 2: first EPR units in operation

GENERAL INFORMATION

- The first two EPR reactors in China
- Power Output: 1,750 MW each
- EDF as co-owner and co-operator: 30% EDF ownership
- Design adaptation to country's tropical climate
- Worldwide annual record per unit

CURRENT STATUS

- July 2017: End of hot functional tests
- 29 June 2018: Unit #1 grid connection
- 13 December 2018: Unit #1 in Commercial Operation
- July 2020: Unit #1 first outage refueling
- September 2015: Vessel Flushing Operations
- 6 June 2018: Unit #1: 1st criticality
- 10 December 2018: Unit #2: Start of hot functional tests
- 7 September 2019: Unit #2 in Commercial Operation

24+ TWh generated per year
EPR HINKLEY POINT C: a new business model

GENERAL INFORMATION

- First nuclear construction in the UK in 30 years
- Power output: 2 x 1,638 MW
- Certification process: Generic Design Assessment (GDA)
- Contract For Difference (CFD) guarantying a fixed price of electricity for 35 years
- 66.5% EDF ownership

CURRENT STATUS

- October 2013
 UK Governments agrees Contracts for Difference

- March 2017
 First concrete successfully poured for power station galleries

- June 2019
 Unit #1: Completion of the common raft, 1st nuclear concrete

- September 2016
 Final contracts signed

NEXT

- June 2020
 Unit #2: Completion of the common raft, 1st nuclear concrete

- End 2021
 Unit #1: Dome lifting

- 2025
 COD Unit #1

- 2026
 COD Unit #2
Securing the future project’s progress

- **Safety culture** development
- **Definition of** an efficient and relevant project organisation
- Reference frames and regulatory requirements
- Reliability of the basic design configuration
- Project and detailed design **software**
- Mature design at contract signature
- **Clear boundaries** between engineering, qualification and procurement contracts and construction and erection contracts
- Scheduling of **Suppliers’** studies with above milestones and Supply chain assessment
- Sites activities steering

CAPITALISED LESSONS LEARNED

Benefiting all future projects
AGENDA

- EDF company profile
- EDF Reference projects and construction experience
- EDF Technology Portfolio
- New projects
- EDF value proposition for Czech Republic nuclear new build program
EDF Technology Portfolio

Large Size Reactors
(> 1,400 MWe)
Optimizing the power capacity per nuclear site
Proven technology

Mid Size Reactors
(900 MWe up to 1,400 MWe)
Integration in the power network
Proven EPR based design

Small Size Reactors
(< 500 MWe)
Affordable and flexible nuclear for power generation
Under development
EPR reactor main characteristics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Power</td>
<td>4,300 MWth – 4,590 MWth</td>
</tr>
<tr>
<td>Electrical power output</td>
<td>1,650 MWe – 1770 MWe</td>
</tr>
<tr>
<td>Thermal efficiency</td>
<td>37 %</td>
</tr>
<tr>
<td>Plant design availability</td>
<td>91 %</td>
</tr>
<tr>
<td>Primary system</td>
<td>4-loop configuration</td>
</tr>
<tr>
<td>Operation cycle length</td>
<td>Up to 24 months</td>
</tr>
<tr>
<td>Design service life</td>
<td>60 years</td>
</tr>
<tr>
<td>Instrumentation & Control</td>
<td>Fully digital</td>
</tr>
<tr>
<td>Fuel assemblies in core</td>
<td>241 with 17x17 arrangement</td>
</tr>
<tr>
<td>Radiation Protection</td>
<td>collective dose < 0.5 man.Sv/y</td>
</tr>
</tbody>
</table>

EPR design fully experienced from licensing to operation.
EPR SAFETY FEATURES

MAIN SAFETY PRINCIPLES...

- REDUNDANCY: To reduce single failure
- DIVERSITY: To reduce common cause failures
- COMPLEMENTARITY: Between active and passive systems
- PREVENTION OF ENVIRONMENTAL DAMAGE
- RESISTANCE TO EXTREME HAZARDS
- ROBUSTNESS OF COOLING CAPABILITY

...TO ACHIEVE ESSENTIAL SAFETY FUNCTIONS

- FULLY COMPLIANT WITH EUROPEAN UTILITY REQUIREMENTS (EUR)
- LICENCED IN 4 COUNTRIES: CHINA, FINLAND, FRANCE AND THE UNITED KINGDOM
- OUTPERFORMED THE EUROPEAN POST-FUKUSHIMA STRESS TEST

1. Four redundant independent safety-systems
2. Reinforced concrete shell
3. Core catcher
EPR performances

13 TWh of low carbon electricity generation per year, avoiding 10.5 millions t eq CO² emissions

Enhanced grid base-load and load-following manoeuvrability: 80% variation in 30 minutes

Biodiversity preservation with limited ecological and land footprint thanks to a compact and optimized design

30% reduction of liquid discharges

An improved efficiency in fuel design and management reducing uranium consumption by 20%

Design for 91% availability
EPR 1200

<table>
<thead>
<tr>
<th>Thermal Power</th>
<th>3,300 MWth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical power output</td>
<td>1,200 MWe</td>
</tr>
<tr>
<td>Thermal efficiency</td>
<td>36 %</td>
</tr>
<tr>
<td>Plant design availability</td>
<td>≥ 91 %</td>
</tr>
<tr>
<td>Primary system</td>
<td>3-loop configuration</td>
</tr>
<tr>
<td>Operation cycle length</td>
<td>Up to 24 months</td>
</tr>
<tr>
<td>Design service life</td>
<td>60 years</td>
</tr>
<tr>
<td>Instrumentation & Control</td>
<td>Fully digital</td>
</tr>
<tr>
<td>Fuel assemblies in core</td>
<td>177 with 17x17 arrangement</td>
</tr>
</tbody>
</table>

EPR technology philosophy:
- Safety (GEN III+, defence-in-depth, 3 trains, core catcher, APC)
- Maintenance and operation (including load-following)
- Radioprotection
- Environmental protection

EPR / EPR 1200 main technological differences
- Number of loops and vessel configuration
- Reactor building interior layout

Main safety related components identical to EPR

PROVEN EPR BASED DESIGN: MODIFICATIONS LIMITED TO 3-LOOP CONFIGURATION FULLY BENEFITS FROM EPR EXPERIENCE
AGENDA

- EDF company profile
- EDF Reference projects and construction experience
- EDF Technology Portfolio
- New projects
- EDF value proposition for Czech Republic nuclear new build program
NEW PROJECTS

UNITED KINGDOM
- Hinkley Point C: 2 EPR
- Sizewell C: 2 EPR
- Bradwell B: 2 UK HUALONG

POLAND
- 6 EPR

CZECH REPUBLIC
- 1 EPR 1200 Dukovany
- 2 sites identified (Dukovany or Temelin)
- 1 to 4 units

KAZAKHSTAN
- 2 EPR 1200 or SMR

CANADA
- SMR 300-400 MW Darlington

BRAZIL
- ANGRA 3 to be completed
- EPR 1200

SOUTH AFRICA
- RFI in september 2020: EPR / SMR

SAUDI ARABIA
- RFI Answer in 2017-2018
- FEED-B Phase in 2019
- 2 EPR

INDIA
- JAITAPUR: 6 EPR

CHINA
- 4 EPR
 - Taishan 1 and 2 in operation
 - Taishan 3 & 4

INDONESIA
- EPR 1200 or SMR

POLAND
- 6 EPR

CZECH REPUBLIC
- 1 EPR 1200 Dukovany
- 2 sites identified (Dukovany or Temelin)
- 1 to 4 units
AGENDA

- EDF company profile
- EDF Reference projects and construction experience
- New projects
- EDF Technology Portfolio
- **EDF value proposition for Czech Republic nuclear new build program**
SIX DIMENSIONS OF EDF VALUE PROPOSITION FOR CZECH REPUBLIC NUCLEAR NEW BUILD PROGRAM

- EPR 1200 reactor: high performance and highest standard in Safety
- Long term partnership across the lifetime of the project
- Extended Know How transfer to the Owner-Operator
- Proven localisation approach leveraging Czech industry capabilities
- Education & Science collaboration
- A cultural and geographical valuable proximity
Thank you for your attention

"In view of the urgency of climate change, the low-carbon electricity produced by EDF is clearly the energy that changes everything. It makes growth and the well-being of citizens sustainable and possible."

Jean-Bernard Lévy, CEO of EDF

Děkuji